A Convergence Speeding Algorithm with Applications to Numerical Integration
نویسندگان
چکیده
منابع مشابه
Speeding Up Dynamic Programming with Applications to
Consider the problem of computing E[j] = mit:! {D[k] + w(k, j)}, j = 1, ... , n, O~k~]-l where w is a given weight function, D[D] is given and for every k = 1, ... , n, D[k] is easily computable from E[k]. This problem appears as a subproblem in dynamic programming solutions to various problems. Obviously, it can be solved in time O( n ), and for a general weight function no better algorithm is...
متن کاملConvergence of product integration method applied for numerical solution of linear weakly singular Volterra systems
We develop and apply the product integration method to a large class of linear weakly singular Volterra systems. We show that under certain sufficient conditions this method converges. Numerical implementation of the method is illustrated by a benchmark problem originated from heat conduction.
متن کاملMultiple Orthogonality and Applications in Numerical Integration
In this paper a brief survey of multiple orthogonal polynomials defined using orthogonality conditions spread out over r different measures are given. We consider multiple orthogonal polynomials on the real line, as well as on the unit semicircle in the complex plane. Such polynomials satisfy a linear recurrence relation of order r+1, which is a generalization of the well known three-term recur...
متن کاملAn Adaptive Numerical Integration Algorithm for Simplices
A globally adaptive algorithm for numerical multiple integration over an n-dimensional simplex is described. The algorithm is based on a subdivision strategy that chooses for subdivision at each stage the subregion (of the input simplex) with the largest estimated error. This subregion is divided in half by bisecting an edge. The edge is chosen using information about the smoothness of the inte...
متن کاملStrong Convergence of the Numerical Path Integration Method
In this paper we study the convergence of the numerical path integration method which produces approximate probability density functions for the solutions of stochastic differential equations. This method enjoys several advantages compared to path-wise approximation schemes. We prove that the approximate probability densities converge strongly in L1 to the probability density of the stochastic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Mathematics
سال: 1999
ISSN: 0196-8858
DOI: 10.1006/aama.1998.0625